π References β
This page lists all academic and technical works cited throughout the AI-Powered Taxation Assistant documentation.
It provides a formal bibliography (APA-style) for research reproducibility and academic evaluation.
π§ Retrieval-Augmented Generation (RAG) & LLMs β
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., et al. (2020).
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
Advances in Neural Information Processing Systems (NeurIPS 2020).
π NeurIPS PaperGao, T., Yao, Y., & Chen, D. (2023).
Retrieval-Augmented Generation for Large Language Models: A Survey.
arXiv preprint arXiv:2312.10997.
π arXivWang, H., Zhang, R., & Li, X. (2024).
CBR-RAG: Case-Based Reasoning for Retrieval-Augmented Generation.
arXiv preprint arXiv:2402.06196.
π arXiv
π Financial Document & Table Extraction β
Paliwal, S., Vishwanathan, S., & Anand, R. (2020).
TableNet: Deep Learning Model for End-to-End Table Detection and Structure Recognition from Images.
arXiv preprint arXiv:2005.06457.
π arXivRiba, P., Dutta, A., & LladΓ³s, J. (2019).
Graph Neural Networks for Table Detection in Invoices.
Proceedings of ICDAR Workshops 2019.
π arXivLiu, C., Huang, T., & Wang, L. (2024).
PdfTable: A Unified Toolkit for Table Extraction from Financial Documents.
arXiv preprint arXiv:2403.10254.
π arXiv
πΌ Financial NLP & Domain Models β
Araci, D. (2020).
FinBERT: Financial Sentiment Analysis with Pre-Trained Language Models.
arXiv preprint arXiv:2006.08097.
π arXivShah, P., & Aggarwal, R. (2024).
Survey of Deep Learning Methods for Document and Table Detection.
ACM Transactions on Intelligent Systems and Technology.
π ACM Digital Library
βοΈ Explainability & Ethical AI β
Parker, C., Cho, S., & Vasarhelyi, M. (2022).
Explainable Artificial Intelligence (XAI) in Auditing.
International Journal of Accounting Information Systems, 44, 100572.
π DOI: 10.1016/j.accinf.2022.100572GΓ³rski, M. (2024).
Exploring Explainable AI in the Tax Domain.
SSRN Electronic Journal.
π SSRN Preprint
βοΈ Applied RAG in Legal & Financial Contexts β
Zhou, L., Patel, S., & Lin, H. (2024).
Interpretable Long-Form Legal QA with Retrieval-Augmented Generation.
arXiv preprint arXiv:2404.01208.
π arXivLi, Q., Zhang, T., & Kim, D. (2025).
RAG-Enhanced Evidence Recommendation in Financial Contexts.
ACM Conference on Financial Computing 2025.
π ACM Digital Library