๐ Research Support โ
This section lists key research papers supporting the technical and theoretical foundation of the AI-Powered Taxation Assistant project.
๐ง Core RAG & LLM Papers โ
| # | Paper | Year | Source |
|---|---|---|---|
| 1 | Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks โ Lewis et al., NeurIPS 2020 | 2020 | NeurIPS |
| 2 | Retrieval-Augmented Generation for Large Language Models: A Survey โ Gao et al., arXiv | 2023 | arXiv |
| 3 | CBR-RAG: Case-Based Reasoning for Retrieval-Augmented Generation โ Wang et al., arXiv | 2024 | arXiv |
๐ Financial Document Analysis โ
๐ผ Domain Models & Financial NLP โ
| # | Paper | Year | Source |
|---|---|---|---|
| 7 | FinBERT: Financial Sentiment Analysis with Pre-trained Language Models โ Araci | 2020 | arXiv |
| 8 | Survey of Deep Learning Methods for Document and Table Detection | 2024 | ACM Digital Library |
โ๏ธ Explainability & Ethics โ
| # | Paper | Year | Source |
|---|---|---|---|
| 9 | Explainable Artificial Intelligence (XAI) in Auditing โ Parker, Cho & Vasarhelyi | 2022 | Elsevier |
| 10 | Exploring Explainable AI in the Tax Domain โ Gรณrski | 2024 | SSRN |
โ๏ธ Applied RAG in Legal & Financial Contexts โ
| # | Paper | Year | Source |
|---|---|---|---|
| 11 | Interpretable Long-Form Legal QA with Retrieval-Augmented Generation | 2024 | arXiv |
| 12 | RAG-Enhanced Evidence Recommendation in Financial Contexts | 2025 | ACM Digital Library |
๐งฉ How to Use These Papers โ
- RAG Pipeline: Follow Lewis (2020) and Gao (2023) for architecture design.
- Extraction Models: TableNet and PdfTable support PDF parsing and OCR integration.
- Domain Tuning: Fine-tune FinBERT for tax/financial contexts.
- Explainability: Integrate XAI patterns from Parker (2022) and Gรณrski (2024).
- Evaluation: Use factuality, retrieval precision, and expert validation metrics.