Skip to content

๐Ÿ“š Research Support โ€‹

This section lists key research papers supporting the technical and theoretical foundation of the AI-Powered Taxation Assistant project.


๐Ÿง  Core RAG & LLM Papers โ€‹

#PaperYearSource
1Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks โ€” Lewis et al., NeurIPS 20202020NeurIPS
2Retrieval-Augmented Generation for Large Language Models: A Survey โ€” Gao et al., arXiv2023arXiv
3CBR-RAG: Case-Based Reasoning for Retrieval-Augmented Generation โ€” Wang et al., arXiv2024arXiv

๐Ÿ“Š Financial Document Analysis โ€‹

#PaperYearSource
4TableNet: Deep Learning Model for End-to-End Table Detection and Structure Recognition2020arXiv
5Graph Neural Networks for Table Detection in Invoices โ€” Riba et al., ICDAR2019arXiv
6PdfTable: A Unified Toolkit for Table Extraction from Financial Documents2024arXiv

๐Ÿ’ผ Domain Models & Financial NLP โ€‹

#PaperYearSource
7FinBERT: Financial Sentiment Analysis with Pre-trained Language Models โ€” Araci2020arXiv
8Survey of Deep Learning Methods for Document and Table Detection2024ACM Digital Library

โš–๏ธ Explainability & Ethics โ€‹

#PaperYearSource
9Explainable Artificial Intelligence (XAI) in Auditing โ€” Parker, Cho & Vasarhelyi2022Elsevier
10Exploring Explainable AI in the Tax Domain โ€” Gรณrski2024SSRN

#PaperYearSource
11Interpretable Long-Form Legal QA with Retrieval-Augmented Generation2024arXiv
12RAG-Enhanced Evidence Recommendation in Financial Contexts2025ACM Digital Library

๐Ÿงฉ How to Use These Papers โ€‹

  • RAG Pipeline: Follow Lewis (2020) and Gao (2023) for architecture design.
  • Extraction Models: TableNet and PdfTable support PDF parsing and OCR integration.
  • Domain Tuning: Fine-tune FinBERT for tax/financial contexts.
  • Explainability: Integrate XAI patterns from Parker (2022) and Gรณrski (2024).
  • Evaluation: Use factuality, retrieval precision, and expert validation metrics.

๐Ÿ”— Quick Access โ€‹